
Coil’s Mojaloop Performance Work 2020
By Don Changfoot and Joran Dirk Greef

Contents

Test Harness
Design - Two Sides Of The Same Coin
Benchmarking The Benchmark

Baseline Throughput
76 TPS
Minimum Deployment

Random Disk Seek Analysis

Metric Analysis
Underutilization
Increase Throughput By Increasing Load

Network Latency Analysis
DNS Queries

From DNS to DoS
No DNS Queries In The Critical Path

SQL Queries
Knex
18 Queries Per Transfer
Eliminating Insert Queries

Fsync Bottleneck Analysis
Back-Of-The-Envelope Calculation
156 TPS Service Ceiling Limit

Waterfall Analysis
Waterfall Charts
Observations

Relationship Between SQL Queries And Throughput
A “Big Gap” Between Critical Work Sections

Concurrency Analysis
The C10K Problem
Testing The Forced Serialization Hypothesis (Concurrency=1)

Fixing Concurrency
Processing Multiple Transfers Concurrently Within A Handler
Consuming Multiple Messages At A Time From Kafka

Unbounded Poller Instantiations
Four Second Latency Spike

Testing Concurrency Throughput Improvements (Concurrency=4)
50%-100% Throughput Improvement
Kafka Network Latency Amortized (Bonus)
Finding The Concurrency Sweetspot

Big Gap Analysis
Summary
Waterfall
Mojaloop Kafka Consumer
Illustration
Latency Gaps
Analogy
Latency Bound
Discussion
Conclusion

Cluster Specifications
ModusBox Reference Cluster - AWS
Coil Cluster - GCP

Test Harness

Design - Two Sides Of The Same Coin
We designed and implemented a single-process test harness to function as both payer and
payee, to initiate thousands of transfers into Mojaloop at varying levels of concurrency, receive
the resulting prepare notifications and turn these around as fulfils back into Mojaloop, measuring
end-to-end throughput as well as individual transfer latency (average and max), using a single
non-distributed wall clock without clock skew.

Benchmarking The Benchmark
We benchmarked our test harness on a null cipher “hello world” implementation server and
were able to achieve more than 10,000 HTTP requests per second. We have confidence that
our test harness will not impact throughput measurements while saturating Mojaloop.

Baseline Throughput

76 TPS
With our test harness in place, we measured a baseline throughput on the order of 76 transfers
per second (TPS) on our particular cluster deployment. This was using the combined handlers.

Minimum Deployment
Our baseline number is significantly lower than the 300 TPS to 900 TPS range delivered on the
ModusBox cluster. We were interested in measuring and optimizing a low-cost deployment of
Mojaloop, and we intentionally set out to see what we could learn from a minimum deployment,
for example running only one pod VM per handler . At the same time, and in consultation with
ModusBox, we were careful to provide adequate resources for critical components such as the
database, assigning each logical pod VM to its own dedicated hardware, to limit contention.

Random Disk Seek Analysis
Our first hypothesis or hunch was that the biggest limit on throughput might be the cost of
random disk seeks, and therefore our initial strategy was simply to measure the TPS difference
between a cluster deployed on NVME versus a cluster deployed on spinning rust, to see if this
was worth investigating further.

However, our 76 TPS baseline on NVME devices led us to conclude that the throughput issue
was more serious than too many random disk seeks (though that may still be a serious issue for
deployments of Mojaloop that cannot afford NVME devices). We abandoned our notion of
deploying Mojaloop on HDD devices and decided to investigate the many incidental costs
inherent in a distributed microservices design such as Mojaloop, by taking into account the
non-zero cost of network latency, often assumed to be zero as one of the eight fallacies of
distributed systems .

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Metric Analysis

Underutilization
While establishing the baseline throughput for our minimum deployment cluster, we reviewed
the existing metrics collected by Prometheus and displayed in Grafana. When optimizing a
system, it is often the case that one must reduce CPU usage, or the number of network packets,
or the number of disk seeks etc. Usually, a system is made more efficient by reducing the
load on physical resources so as to achieve more throughput. However, in the case of
Mojaloop, what struck us was the absence of utilization of the underlying hardware. The
CPU usage across all pod VMs was low (on the order of 2%), network utilization was low (a few
KB/s), and MySQL query latency was low (no slow queries). Nothing seemed to be struggling.
As an anecdote, we even received a friendly dashboard warning in GCP that, according to
Google, our cluster was not being utilized past a few percent and that perhaps we should
downsize.

Increase Throughput By Increasing Load
Rather than ask how we can use less CPU, the metrics led us to ask how can we use more
CPU? Rather than look at optimizing CPU hotspots such as native bindings etc. we decided first
to look at optimizing idle time, points in the software where the system is waiting on something
asynchronous. This could be a call to setTimeout() or a network call, or a lack of concurrency
i.e. doing things one after the other where we could be doing them concurrently to increase
load. It’s an interesting problem: to increase throughput by increasing load.

Network Latency Analysis

DNS Queries

From DNS to DoS
Node.js has a little-known, longstanding and nasty bug where calls to Node’s dns.lookup() can
stall all subsequent DNS queries and all filesystem IO . The reason is that dns.lookup() is
implemented by calling getaddrinfo() by default, which is a blocking system call into the kernel
and which must therefore be run in Node’s libuv thread pool in order not to block Node’s event
loop. The trouble is that Node’s libuv thread pool has a default UV_THREADPOOL_SIZE of
only 4 threads. This means that 4 slow DNS queries are enough to have a dramatic denial of
service impact on the system as a whole. For a microservices architecture, this would indeed
manifest itself in low throughput and low utilization.

No DNS Queries In The Critical Path
We monkey-patched Node's dns.lookup() to capture the latency and endpoints of all DNS
queries made by Mojaloop’s central ledger. Thankfully, this was a negative result and we found
that there were no DNS queries in the critical path of a transfer from start to finish. Our search
for the cause of low utilization would have to look elsewhere...

https://github.com/nodejs/node/issues/8436

SQL Queries

Knex
Mojaloop uses a helper wrapper for MySQL called Knex. Knex describes itself as a "batteries
included" SQL query builder for Postgres, MSSQL, MySQL, MariaDB, SQLite3, Oracle, and Amazon
Redshift designed to be flexible, portable, and fun to use .

ORMs and query builders are known to increase the risk of object-relational impedance
mismatch , for example by mapping a “find one” method to a “find all” method returning an array
and then taking the first result.

18 Queries Per Transfer
Because of the presence of Knex, and because we wanted a better grasp on the critical
business logic, instead of reading the Mojaloop source to piece the queries together, we
decided to cast a wide net by instrumenting the Knex MySQL binding to capture all actual
SQL queries sent over the network in the course of processing a single transfer:

1 Transfer = 11 Inserts + 2 Updates + 6 Selects = 18 SQL Queries

A single transfer results in a network amplification factor of 18 queries , and a write
amplification factor of 13 atomic database transactions , all requiring fsync(), an extremely
expensive system call.

Eliminating Insert Queries
We found at least two insert queries that can be eliminated:

1. insert into ̀ilpPacket` (`transferId`, ̀value`) inserts a single value that can be moved to insert
into ̀transfer` (`amount`, ̀currencyId`, ̀expirationDate`, ̀ilpCondition`, ̀transferId`) to combine
two inserts in one .

2. insert into ̀transferDuplicateCheck` (`hash`, ̀transferId`) is a CAS-style insert-or-fail query
used for duplicate checking that can similarly be eliminated by moving the hash value to the
transfer table and by adding a bloom filter to shield the database from 99% of duplicate checks.
This need not have an impact on cluster startup latency since the bloom filter would only need
the last few hours of transfer hashes to initialize, assuming that the majority of duplicates have
temporal proximity.

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

Fsync Bottleneck Analysis

Back-Of-The-Envelope Calculation
Since our cluster uses a single NVME device underneath MySQL, and since the average
latency of fsync() on high-end NVME devices is between 0.14ms to 3.8ms , a
back-of-the-envelope calculation would imply an fsync() constraint on transfer throughput (TPS)
that is dependent on the model of NVME device used:

Intel PC-3700 = 1000ms / (0.14ms fsync() * 13 writes) = 549 transfers per second
Intel 750 = 1000ms / (0.49ms fsync() * 13 writes) = 156 transfers per second
Intel PC-3100 = 1000ms / (0.79ms fsync() * 13 writes) = 97 transfers per second
Samsung SSD 960 PRO = 1000ms / (3.8ms fsync() * 13 writes) = 20 transfers per second

156 TPS Service Ceiling Limit
N.B. For our particular cluster, we therefore expect a service ceiling of between 156 to
549 transfers per second, necessarily imposed by Mojaloop’s write amplification factor of
13 database transactions per transfer. This fsync() bottleneck may prove to be the first or
second linear constraint we bump our heads into, and without due consideration may mask any
performance gains from other optimizations. In other words, this fsync() bottleneck would need
to be addressed by reducing write amplification first, before the performance benefit of other
optimizations can be fully assessed.

https://www.percona.com/blog/2018/02/08/fsync-performance-storage-devices

Waterfall Analysis

Waterfall Charts
While Mojaloop supports tracing and logging, we still needed a way to “see” the causal
dependence across the SQL queries we had captured, so that we could further investigate the
effect of network latency (and the distributed microservices design) on transfer throughput.
Specifically, we wanted to be able to add the latencies of events not overshadowed by longer
concurrent events to arrive at a true cost of network latency. A waterfall chart can make hidden
problems visually obvious, and to this end we created and open-sourced
@donchangfoot/waterfall : https://github.com/DonChangfoot/waterfall

Observations
To avoid misrepresenting a single transfer, we created 100 different waterfalls for 100 different
transfers, all spaced one second apart to eliminate any differences due to variance. We found
that all 100 waterfalls were almost exactly consistent in terms of timing so that we could have
some confidence that we had a clear picture of a single transfer not distorted by variance:

Visualizing a single transfer as a waterfall chart revealed two striking data points, namely a
relationship between SQL queries and throughput, and a “Big Gap” between critical work
sections.

https://github.com/DonChangfoot/waterfall

Relationship Between SQL Queries And Throughput
We saw that the cumulative sum of network and database latency across all SQL queries for a
single transfer (the red bars) was 13ms. This latency was measured after a warmup and without
any concurrent load.

By accident or by habit, we did a back-of-the-envelope calculation comparing the cumulative
latency of the SQL queries for a single transfer with throughput. We did not expect to see much
relationship between the cumulative latency of the SQL queries for a single transfer and
throughput. However, what we found surprised us:

1000ms / 13ms cumulative latency of the SQL queries for a single transfer = 76 TPS

In other words, the baseline throughput of the entire cluster under concurrent load
already established as 76 TPS, was EXACTLY the same as the throughput estimate
derived from only the critical SQL work performed for a single transfer.

We had expected the cluster throughput under concurrent load to be higher for several reasons:

1. The database can handle concurrent load.
2. The network can handle concurrent load. At least half of the 13ms cumulative latency of

the SQL queries for a single transfer was probably network latency (with around 6ms of
database latency spent mostly on fsync i.e. 0.49ms fsync() * 13 writes = 6ms).

3. We assumed that Mojaloop would process transfers concurrently.

We revisit this last assumption in our Concurrency Analysis .

A “Big Gap” Between Critical Work Sections

Our second takeaway from the waterfall for a single transfer was that the critical work for a
transfer could be divided into two sections, the prepare handler and the fulfil handler. However,
the cumulative latency for these two critical sections was only 13ms, compared to total
end-to-end transfer latency of 134ms, an order of magnitude greater than the critical work.

We were fairly confident that:

1. The network latency between the Mojaloop cluster and our test harness was on the
order of 1ms to 3ms at most and that our test harness was not lagging in turning prepare
notifications around as fulfil requests.

2. We were not suffering from clock skew, since our external test harness clock was a
single wall clock, and since our internal central ledger clock was also a single wall clock.

3. Any reduction in this “Big Gap” would improve latency but not throughput since we had
already established an exact relationship between throughput and the 13ms cumulative
latency of the SQL queries (or critical work) for a single transfer.

After sharing our initial result with the Mojaloop community, we decided to investigate further.

Concurrency Analysis

The C10K Problem
Our Waterfall Analysis revealed an exact relationship between the critical SQL work of a single
transfer and throughput, which should not be the case, unless transfers are processed
sequentially by handlers. However, Node.js was designed to solve the C10K problem and is
able to process thousands of asynchronous events concurrently for high throughput. Failing to
exploit concurrency would certainly contribute to the underutilization and low throughput that we
were seeing. We decided to investigate this forced serialization hypothesis.

Testing The Forced Serialization Hypothesis (Concurrency=1)
We reran our load test to generate 20 concurrent transfers and plotted the resulting
prepare/position handler start and end times as a waterfall. This revealed that each Mojaloop
handler was indeed forcing transfers to be processed one at a time within the handler, by
requesting only one message from Kafka, then processing this message, before going back to
Kafka for another message, thereby wasting the Node.js process and associated libuv
threadpool, since most of the critical work in processing a message represents asynchronous
network requests to the MySQL database:

https://en.wikipedia.org/wiki/C10k_problem

Fixing Concurrency

Processing Multiple Transfers Concurrently Within A Handler
We found that central-services-stream/src/kafka/consumer.js already made provision for
processing messages using flow control with different levels of concurrency (with the default
being no concurrency). We therefore needed only to find a way to consume multiple messages
at a time from Kafka.

Consuming Multiple Messages At A Time From Kafka
The librdkafka library makes a critical throughput tuning recommendation :

The key to high throughput is message batching - waiting for a certain amount of
messages to accumulate in the local queue before sending them off in one large
message set or batch to the peer. This amortizes the messaging overhead and
eliminates the adverse effect of the round trip time (rtt).

While Mojaloop exposed a batchSize config option per handler, to configure the number of
messages (not bytes) returned per poll to Kafka, we found two bugs in
central-services-stream/src/kafka/consumer.js when increasing batchSize .

Unbounded Poller Instantiations

Although each message received from Kafka is passed to a synchronous queue called
_syncQueue , an instance of the async library’s queue object , every single processed message
results in a call to _consumeRecursive() , which in turn launches a never-ending poll against
Kafka that will make a network request to Kafka every 1100ms (consumeTimeout=1000ms +
recursiveTimeout=100ms).

When batchSize is 1, this is not a problem, but when batchSize is greater than 1, an additional
poll against Kafka is launched for every transfer flowing through Mojaloop. After several
thousand transfers, Kafka would be brought to its knees by the sheer number of pollers.

We submitted a fix to add a guard within _consumeRecursive() to launch a poll against
Kafka only if no other polls exist, no matter how many times _consumeRecursive() is
called or from where.

https://github.com/edenhill/librdkafka/blob/master/INTRODUCTION.md#high-throughput
https://caolan.github.io/async/v3/docs.html#queue

Four Second Latency Spike
We found another interesting case where sending 20 concurrent transfers into Mojaloop with a
batchSize of 8 would result in a four second latency spike for the last 4 transfers:

6adb4ae6-ca05-45e7-8f9f-9a8e1fe67ed0 300ms
7d9bcddc-e52b-4fae-8261-44ce4e22adb3 421ms
fc059148-6408-4c02-9e98-095bf6adb961 433ms
0574caf4-b5c3-4217-8243-9f160cf576aa 438ms
79d6f28c-282d-4cb9-bc2f-2c314db52b2f 441ms
7bd9f47f-16bb-4790-9c27-2a46882086e7 445ms
c6b35825-074c-4aee-baeb-c8f43f1da9c6 448ms
775d4dea-93f9-401e-882c-9234f4d79f2b 449ms
92d1d88a-1452-47f1-aadc-1ad35de3cbc7 583ms
b32b7aec-724c-4047-9cdd-f0389ef7953f 589ms
340422c2-957b-4b6f-9ecd-75d20ed5d227 592ms
433e6e92-9736-4d9a-af64-13a9d4e06817 593ms
be16e1d4-fd27-4fe2-b872-f2e9e7c2b4db 599ms
a6ee1d6e-71d2-4f1e-8886-50ee2887f42b 600ms
79f54796-150b-42f2-8037-2fd34f0b5b5a 607ms
444c8ef8-03af-4c03-bb95-28a0187370cf 608ms
0ca93c5e-ceba-460e-9447-59c2816b720b 4254ms
22410a91-4d13-45ca-97a4-610262624bf4 4257ms
24a8fdf2-bc80-400c-aa02-c3f2c7c80992 4262ms
4d7a826e-a097-4ba0-8f40-47da0fdfa6fe 4266ms

In fact, we were able to generalize and reproduce this four second latency spike for any
test where the number of concurrent transfers into Mojaloop was not a multiple of the
batchSize of the number of messages consumed at a time from Kafka.

The reason for this surprising behavior was a little-used config variable called consumeTimout ,
also used by central-services-stream/src/kafka/consumer.js , which was by default set to 1000ms
i.e. one second. This consumeTimeout is passed to Kafka and instructs Kafka to wait at most
one second if it has less than batchSize messages available to consume. In other words, if the
consumer asks for four messages, and Kafka only has three available, then Kafka will wait a full
second before returning whatever messages it has. We found this one second delay was
encountered by both the prepare and fulfil handlers as well as both notification handlers,
resulting in a four second latency spike across a transfer.

We submitted a fix to reduce the default consumeTimeout latency from 1000ms to 50ms
and we propose that Mojaloop implement config validation in future to warn operators
about misconfigured config options.

Testing Concurrency Throughput Improvements (Concurrency=4)
After updating Mojaloop to process messages within handlers concurrently and then setting the
concurrency level per handler to 4, we reran our load test to generate 20 concurrent transfers
and plotted the resulting prepare/position handler start and end times as a waterfall:

The result confirmed that Mojaloop was now able to process messages concurrently, with
messages within a handler now being processed 4 at a time. As soon as the first message
finished processing (after 20ms), the next message was immediately processed, and so on.

50%-100% Throughput Improvement
The cumulative latency for the concurrent waterfall is 147ms in total, almost half the
cumulative latency for the baseline waterfall of 278ms, representing a throughput of 136
TPS (1000ms / (147ms / 20 transfers)) compared to the baseline throughput of 71 TPS, and
resulting in a throughput improvement of 91% ((136 - 71) / 71 * 100) for this test run.

Kafka Network Latency Amortized (Bonus)
In addition to the above result, whereas the network latency to Kafka in between handlers was
clearly contributing to the total latency of the baseline waterfall (278ms - 260ms = 18ms), the
network latency to Kafka is now eliminated , since we were also able to optimize Mojaloop to
fetch messages from Kafka in the background while still processing messages in the
foreground, amortizing the network latency to Kafka. However, we recommend that this bonus
optimization be disabled to ensure Kafka auto-commit safety, since Kafka may auto-commit the
consumed log offset for messages still being processed as soon as the next batch of messages
is requested.

Finding The Concurrency Sweetspot
With our minimum deployment, we reran our load test to generate 1000 transfers, sending 100
transfers into Mojaloop concurrently, in order to find the concurrency/throughput sweetspot:

Concurrency Test Run Batch size Throughput Latency Avg
(ms)

Latency Max
(ms)

1 1 1 69 1381 1562

 2 1 71 1341 1629

 3 1 73 1310 1525

4 1 4 133 718 985

 2 4 130 728 1041

 3 4 134 715 1041

8 1 8 139 685 983

 2 8 143 651 903

 3 8 146 654 881

16 1 16 131 738 1199

 2 16 112 848 1766

 3 16 115 840 1669

16 1 10 133 724 1128

 2 10 128 756 1473

 3 10 138 696 967

Big Gap Analysis

Summary
The term “Big Gap” refers to the large period of time, on the waterfall chart for a single transfer,
between the prepare and fulfill handlers processing a message. We do not think this would be a
problem in a production environment as increased queue depth and multiplicity of handlers
minimizes the effect. However, operators need to be aware of this and we recommend that
sanity checks be introduced in the code for queue consumption settings.

Waterfall
We instrumented the central-services-database and central-services-stream libraries to capture
how the time for a transfer is spent:

As can be seen, the total time for the transfer is 142ms of which at least 100ms is due to a
setTimeout() delay.

Mojaloop Kafka Consumer
Mojaloop supports different ways to consume from a Kafka topic. This focuses on just one
method as this was the default at the time of testing viz. Recursive consuming with synchronous
message processing. A consumer subscribes to a Kafka topic at which time a recursive call to
consume is started. When consuming, a batch (C_batchSize) of messages is requested. if there
aren’t enough messages to satisfy C_batchSize, Kafka will wait for up to C_consumeTimeout
before returning what messages it has. Once the consumer has the messages it then adds
them to a queue to be processed at the configured concurrency.

Constant Default Value Description

C_recursiveTimeout 100ms The setTimeout() delay
before consuming from the
topic again if there are no
messages or there has been
an error.

C_work Varies The time taken for a handler
to process a message.

C_consumeTimeout 1000 ms The time that Kafka will wait
up to for C_batchSize to be
met before returning the
messages.

C_batchSize 1 The number of messages
consumed from a topic at a
time

C_concurrency 1 The number of messages
that are processed
concurrently.

Illustration
To illustrate this, consider the case where there are no messages in the Kafka topic. A timeline
of what is happening would look like:

In the figure above, time elapses on the horizontal axis and the vertical axis represents when
the Kafka topic is being connected to by the consumer. At t_0, the consumer connects to the
Kafka topic. Since there are no messages in the topic, Kafka will wait for C_consumeTimeout
before closing the connection at t_1. The consumer will wait for C_recursiveTimeout before
connecting to the topic at t_2. You can see that the effect is to create windows where the Kafka
topic is checked for messages. Now consider the case where a single message is placed into
the Kafka topic:

The dotted lines illustrate the first case where there are no messages. The bolder lines illustrate
how this changes when a message is placed onto the topic and then consumed for processing.
Noting that C_batchSize = 1, Kafka will return the message it has at t_1. The consumer will then
process this message for C_work before connecting to the topic at t_2. As can be seen, straight
after the handler finished its processing it consumes from the Kafka topic again. This results in
the windows where the topic is checked for messages to be shifted to the right of the original
windows.

Latency Gaps
There is a potential for latency to be introduced when handlers are connected in series. In the
case of Mojaloop, this means the Prepare-position handler produces to the same topic that the
Notification handler consumes from. This is illustrated in the figure below:

Here we have assumed that the handlers are using the same C_consumeTimeout,
C_recursiveTimeout and are started at the same time. The top part of the above figure is the
Prepare-position handler receiving a message in its window. It starts to process the message. In
the meantime, the Notification handler connects to the notification topic at t_2. At t_3 the
Prepare-position has finished processing the message and produced it to the notification topic.
Since this has fallen inside of the window where the Notification handler is connected to Kafka,
Kafka will return the message to the notification handler. In this case, there is no latency.

Let us consider the scenario illustrated in the figure below.

This is similar to the previous scenario except the Prepare-position handler produces to the
notification topic at t_1. This is in the C_recursiveTimeout of the Notification handler. This
introduces a Gap = t_2 - t_1 as the Notification handler will only connect to the topic at t_2.

Analogy
Consider a train arriving at a station to collect passengers. Messages are passengers arriving
according to some distribution. The constraint is that the train will leave when it is full or when
the departure time has been reached; whichever comes first. C_work is the time it takes for the
train to go to its destination and return. Here we can see the throughput of this system is
dependent on how many people the train can carry at a time. The wait-time or latency for
passengers is dependent on the time they arrive and the arrival windows of the trains.

Latency Bound
Based on the above observations, we can give an upper bound for the latency. Consider the
below variables:

Variable Description

x_1 Start offset for handler 1

x_2 Start offset for handler 2

C_stagger x_1 - x_2

x Offset for when message is put onto handler
1 topic

C_consumeTimeout1 Consume timeout for handler 1

C_consumeTimeout2 Consume timeout for handler 2

C_work1 Time for handler 1 to process message

C_work2 Time for handler 2 to process message

C_recursiveTimeout1 Recursive wait time for handler 1

C_recursiveTimeout2 Recursive wait time for handler 2

Then

Gap = C_consumeTimeout2 + C_recursiveTimeout2 + x_1 - (x_2 + x + C_work1)

Let C_stagger = x_1 - x_2

Gap = C_consumeTimeout2 + C_recursiveTimeout2 - (x + C_work1) - C_stagger

We assume that (-C_recursiveTimeout2) < C_stagger < C_recursiveTimeout2 then

Gap < C_consumeTimeout2 + 2 * C_recursiveTimeout2

Discussion
From the above we see that the latency is dependent on the constants used for the handler
consuming from a topic. For a Mojaloop prepare leg, the Prepare-position handler consumes
from the Prepare topic and the Notification handler consumes from the Notification topic. Since
both handlers are configured to use the same C_recursiveTimout and C_consumeTimeout:

Prepare Gap < 2 * (C_consumeTimeout + 2 * C_recursiveTimeout)

Similarly for the Transfer leg, the Fulfill-position handler consumes from the Fulfill topic and the
Notification handler consumes from the notification topic.

Fulfill Gap < 2 * (C_consumeTimeout + 2 * C_recursiveTimeout)

For a transfer this gives

Total Gap < 4 * (C_consumeTimeout + 2 * C_recursiveTimeout)

Conclusion
Throughput and latency may or may not relate to each other, and that if they do, then this
relationship may be inverse or even direct, according to the nature of the system being
analyzed. In the case of Mojaloop, the “Big Gap” problem is a latency cost incurred by the fact
that messages are pulled from a topic. This cost can be reduced by decreasing timeouts and
better make use of that time by increasing concurrency but it is unlikely to be eradicated due to
the fundamental constraints of the system. Finally, this is a problem only when there are
intermittent arrivals in payments, leading to the Kafka queues not always having messages to
consume. We do not think this would be a problem in a production environment as increased
queue depth and multiplicity of handlers minimizes the effect. However, operators need to be
aware of this and we recommend that sanity checks be introduced in the code for queue
consumption settings.

Cluster Specifications

ModusBox Reference Cluster - AWS
1 instance = i3Xl - AWS storage optimised. 4 vCPUs with 30.5 GiB memory
Kafka + zookeeper 3 instances
1 instance for mysql

Coil Cluster - GCP
Instance type: n1-standard-4 4vCPUs 15GiB RAM
https://cloud.google.com/products/calculator/#id=5ccb8977-1eb6-45ed-ac41-6415dd708632

Component Pod Scale Dedicated Nodes label

Kafka + ZooKeeper 3 broker

MySQL 1 1 data

ML-API-Adapter 1 1 ml_api

Prepare handler 1 1 ml_cl_prepare

https://cloud.google.com/products/calculator/#id=5ccb8977-1eb6-45ed-ac41-6415dd708632

Position handler 1 1 ml_cl_position

Fulfill handler 1 1 ml_cl_fulfil

Notification handler 1 1 ml_notify

Load generator 1 1 load

monitoring 1 monitor

SSD 32 GB

