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Test   Harness  

Design   -   Two   Sides   Of   The   Same   Coin  
We   designed   and   implemented   a   single-process   test   harness   to   function   as   both   payer   and  
payee,   to   initiate   thousands   of   transfers   into   Mojaloop   at   varying   levels   of   concurrency,   receive  
the   resulting   prepare   notifications   and   turn   these   around   as   fulfils   back   into   Mojaloop,   measuring  
end-to-end   throughput   as   well   as   individual   transfer   latency   (average   and   max),   using   a   single  
non-distributed   wall   clock   without   clock   skew.  

Benchmarking   The   Benchmark  
We   benchmarked   our   test   harness   on   a   null   cipher   “hello   world”   implementation   server   and  
were   able   to   achieve   more   than   10,000   HTTP   requests   per   second.   We   have   confidence   that  
our   test   harness   will   not   impact   throughput   measurements   while   saturating   Mojaloop.  

Baseline   Throughput  

76   TPS  
With   our   test   harness   in   place,   we   measured   a   baseline   throughput   on   the   order   of   76   transfers  
per   second   (TPS)   on   our   particular   cluster   deployment.   This   was   using   the   combined   handlers.  

Minimum   Deployment  
Our   baseline   number   is   significantly   lower   than   the   300   TPS   to   900   TPS   range   delivered   on   the  
ModusBox   cluster.   We   were   interested   in   measuring   and   optimizing   a   low-cost   deployment   of  
Mojaloop,   and   we   intentionally   set   out   to   see   what   we   could   learn   from   a   minimum   deployment,  
for   example     running    only   one   pod   VM   per   handler .   At   the   same   time,   and   in   consultation   with  
ModusBox,   we   were   careful   to   provide   adequate   resources   for   critical   components   such   as   the  
database,   assigning   each   logical   pod   VM   to   its   own   dedicated   hardware,   to   limit   contention.  

  



Random   Disk   Seek   Analysis  
Our   first   hypothesis   or   hunch   was   that   the   biggest   limit   on   throughput   might   be   the   cost   of  
random   disk   seeks,   and   therefore   our   initial   strategy   was   simply   to   measure   the   TPS   difference  
between   a   cluster   deployed   on   NVME   versus   a   cluster   deployed   on   spinning   rust,   to   see   if   this  
was   worth   investigating   further.  
 
However,   our   76   TPS   baseline   on   NVME   devices   led   us   to   conclude   that   the   throughput   issue  
was   more   serious   than   too   many   random   disk   seeks   (though   that   may   still   be   a   serious   issue   for  
deployments   of   Mojaloop   that   cannot   afford   NVME   devices).   We   abandoned   our   notion   of  
deploying   Mojaloop   on   HDD   devices   and   decided   to   investigate   the   many   incidental   costs  
inherent   in   a   distributed   microservices   design   such   as   Mojaloop,   by   taking   into   account   the  
non-zero   cost   of   network   latency,   often   assumed   to   be   zero   as   one   of    the   eight   fallacies   of  
distributed   systems .  

  

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing


Metric   Analysis  

Underutilization  
While   establishing   the   baseline   throughput   for   our   minimum   deployment   cluster,   we   reviewed  
the   existing   metrics   collected   by   Prometheus   and   displayed   in   Grafana.   When   optimizing   a  
system,   it   is   often   the   case   that   one   must   reduce   CPU   usage,   or   the   number   of   network   packets,  
or   the   number   of   disk   seeks   etc.    Usually,   a   system   is   made   more   efficient   by   reducing   the  
load   on   physical   resources   so   as   to   achieve   more   throughput.   However,   in   the   case   of  
Mojaloop,   what   struck   us   was   the   absence   of   utilization   of   the   underlying   hardware.    The  
CPU   usage   across   all   pod   VMs   was   low   (on   the   order   of   2%),   network   utilization   was   low   (a   few  
KB/s),   and   MySQL   query   latency   was   low   (no   slow   queries).   Nothing   seemed   to   be   struggling.  
As   an   anecdote,   we   even   received   a   friendly   dashboard   warning   in   GCP   that,   according   to  
Google,   our   cluster   was   not   being   utilized   past   a   few   percent   and   that   perhaps   we   should  
downsize.  

Increase   Throughput   By   Increasing   Load  
Rather   than   ask   how   we   can   use   less   CPU,   the   metrics   led   us   to   ask   how   can   we   use   more  
CPU?   Rather   than   look   at   optimizing   CPU   hotspots   such   as   native   bindings   etc.   we   decided   first  
to   look   at   optimizing   idle   time,   points   in   the   software   where   the   system   is   waiting   on   something  
asynchronous.   This   could   be   a   call   to    setTimeout()    or   a   network   call,   or   a   lack   of   concurrency  
i.e.   doing   things   one   after   the   other   where   we   could   be   doing   them   concurrently   to   increase  
load.   It’s   an   interesting   problem:   to   increase   throughput   by   increasing   load.   



Network   Latency   Analysis  

DNS   Queries  

From   DNS   to   DoS  
Node.js   has   a    little-known,   longstanding   and   nasty   bug    where   calls   to   Node’s    dns.lookup()    can  
stall   all   subsequent   DNS   queries   and   all   filesystem   IO .   The   reason   is   that    dns.lookup()    is  
implemented   by   calling    getaddrinfo()    by   default,   which   is   a   blocking   system   call   into   the   kernel  
and   which   must   therefore   be   run   in   Node’s   libuv   thread   pool   in   order   not   to   block   Node’s   event  
loop.   The   trouble   is   that   Node’s   libuv   thread   pool   has   a   default    UV_THREADPOOL_SIZE    of  
only   4   threads.   This   means   that   4   slow   DNS   queries   are   enough   to   have   a   dramatic   denial   of  
service   impact   on   the   system   as   a   whole.   For   a   microservices   architecture,   this   would   indeed  
manifest   itself   in   low   throughput   and   low   utilization.  

No   DNS   Queries   In   The   Critical   Path  
We   monkey-patched   Node's    dns.lookup()    to   capture   the   latency   and   endpoints   of   all   DNS  
queries   made   by   Mojaloop’s   central   ledger.   Thankfully,   this   was   a   negative   result   and   we   found  
that   there   were   no   DNS   queries   in   the   critical   path   of   a   transfer   from   start   to   finish.   Our   search  
for   the   cause   of   low   utilization   would   have   to   look   elsewhere...   

https://github.com/nodejs/node/issues/8436


SQL   Queries  

Knex  
Mojaloop   uses   a   helper   wrapper   for   MySQL   called   Knex.    Knex   describes   itself   as    a   "batteries  
included"   SQL   query   builder   for   Postgres,   MSSQL,   MySQL,   MariaDB,   SQLite3,   Oracle,   and   Amazon  
Redshift   designed   to   be   flexible,   portable,   and   fun   to   use .  
 
ORMs   and   query   builders   are   known   to   increase   the   risk   of    object-relational   impedance  
mismatch ,   for   example   by   mapping   a   “find   one”   method   to   a   “find   all”   method   returning   an   array  
and   then   taking   the   first   result.  

18   Queries   Per   Transfer  
Because   of   the   presence   of   Knex,   and   because   we   wanted   a   better   grasp   on   the   critical  
business   logic,   instead   of   reading   the   Mojaloop   source   to   piece   the   queries   together,    we  
decided   to   cast   a   wide   net    by   instrumenting   the   Knex   MySQL   binding   to   capture   all   actual  
SQL   queries   sent   over   the   network   in   the   course   of   processing   a   single   transfer:  
 
1   Transfer   =   11   Inserts   +   2   Updates   +   6   Selects   =   18   SQL   Queries  
 
A   single   transfer   results   in   a    network   amplification   factor   of   18   queries ,   and   a    write  
amplification   factor   of   13   atomic   database   transactions ,   all   requiring   fsync(),   an   extremely  
expensive   system   call.  

Eliminating   Insert   Queries  
We   found   at   least   two   insert   queries   that   can   be   eliminated:  
 
1.    insert   into   ̀ilpPacket`   (`transferId`,   ̀value`)    inserts   a   single   value   that   can   be   moved   to    insert  
into   ̀transfer`   (`amount`,   ̀currencyId`,   ̀expirationDate`,   ̀ilpCondition`,   ̀transferId`)    to   combine  
two   inserts   in   one .  
 
2.   insert   into   ̀transferDuplicateCheck`   (`hash`,   ̀transferId`)    is   a   CAS-style   insert-or-fail   query  
used   for   duplicate   checking   that   can   similarly   be   eliminated   by   moving   the   hash   value   to   the  
transfer    table   and   by   adding   a   bloom   filter   to   shield   the   database   from   99%   of   duplicate   checks.  
This   need   not   have   an   impact   on   cluster   startup   latency   since   the   bloom   filter   would   only   need  
the   last   few   hours   of   transfer   hashes   to   initialize,   assuming   that   the   majority   of   duplicates   have  
temporal   proximity.  

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch


Fsync   Bottleneck   Analysis  

Back-Of-The-Envelope   Calculation  
Since   our   cluster   uses   a   single   NVME   device   underneath   MySQL,   and   since   the   average  
latency   of   fsync()   on   high-end   NVME   devices   is    between   0.14ms   to   3.8ms ,   a  
back-of-the-envelope   calculation   would   imply   an   fsync()   constraint   on   transfer   throughput   (TPS)  
that   is   dependent   on   the   model   of   NVME   device   used:  
 
Intel   PC-3700   =   1000ms   /   (0.14ms   fsync()   *   13   writes)   =   549   transfers   per   second  
Intel   750   =   1000ms   /   (0.49ms   fsync()   *   13   writes)   =   156   transfers   per   second  
Intel   PC-3100    =   1000ms   /   (0.79ms   fsync()   *   13   writes)   =   97   transfers   per   second  
Samsung   SSD   960   PRO   =   1000ms   /   (3.8ms   fsync()   *   13   writes)   =   20   transfers   per   second  

156   TPS   Service   Ceiling   Limit  
N.B.   For   our   particular   cluster,   we   therefore   expect   a   service   ceiling   of   between   156   to  
549   transfers   per   second,   necessarily   imposed   by   Mojaloop’s   write   amplification   factor   of  
13   database   transactions   per   transfer.    This   fsync()   bottleneck   may   prove   to   be   the   first   or  
second   linear   constraint   we   bump   our   heads   into,   and   without   due   consideration   may   mask   any  
performance   gains   from   other   optimizations.   In   other   words,   this   fsync()   bottleneck   would   need  
to   be   addressed   by   reducing   write   amplification   first,   before   the   performance   benefit   of   other  
optimizations   can   be   fully   assessed.  

  

https://www.percona.com/blog/2018/02/08/fsync-performance-storage-devices


Waterfall   Analysis  

Waterfall   Charts  
While   Mojaloop   supports   tracing   and   logging,   we   still   needed   a   way   to   “see”   the   causal  
dependence   across   the   SQL   queries   we   had   captured,   so   that   we   could   further   investigate   the  
effect   of   network   latency   (and   the   distributed   microservices   design)   on   transfer   throughput.  
Specifically,   we   wanted   to   be   able   to   add   the   latencies   of   events   not   overshadowed   by   longer  
concurrent   events   to   arrive   at   a   true   cost   of   network   latency.   A   waterfall   chart   can   make   hidden  
problems   visually   obvious,   and   to   this   end   we   created   and   open-sourced  
@donchangfoot/waterfall :    https://github.com/DonChangfoot/waterfall  

Observations  
To   avoid   misrepresenting   a   single   transfer,   we   created   100   different   waterfalls   for   100   different  
transfers,   all   spaced   one   second   apart   to   eliminate   any   differences   due   to   variance.   We   found  
that   all   100   waterfalls   were   almost   exactly   consistent   in   terms   of   timing   so   that   we   could   have  
some   confidence   that   we   had   a   clear   picture   of   a   single   transfer   not   distorted   by   variance:  
 

 
Visualizing   a   single   transfer   as   a   waterfall   chart   revealed   two   striking   data   points,   namely   a  
relationship   between   SQL   queries   and   throughput,   and   a   “Big   Gap”   between   critical   work  
sections.  

  

https://github.com/DonChangfoot/waterfall


Relationship   Between   SQL   Queries   And   Throughput  
We   saw   that   the   cumulative   sum   of   network   and   database   latency   across   all   SQL   queries   for   a  
single   transfer   (the   red   bars)   was   13ms.   This   latency   was   measured   after   a   warmup   and   without  
any   concurrent   load.  
 
By   accident   or   by   habit,   we   did   a   back-of-the-envelope   calculation   comparing   the   cumulative  
latency   of   the   SQL   queries   for   a   single   transfer   with   throughput.   We   did   not   expect   to   see   much  
relationship   between   the   cumulative   latency   of   the   SQL   queries   for   a   single   transfer   and  
throughput.   However,   what   we   found   surprised   us:  
 
1000ms   /   13ms   cumulative   latency   of   the   SQL   queries   for   a   single   transfer   =   76   TPS  
 
In   other   words,   the   baseline   throughput   of   the   entire   cluster   under   concurrent   load  
already   established   as   76   TPS,   was   EXACTLY   the   same   as   the   throughput   estimate  
derived   from   only   the   critical   SQL   work   performed   for   a   single   transfer.  
 
We   had   expected   the   cluster   throughput   under   concurrent   load   to   be   higher   for   several   reasons:  
 

1. The   database   can   handle   concurrent   load.  
2. The   network   can   handle   concurrent   load.   At   least   half   of   the   13ms   cumulative   latency   of  

the   SQL   queries   for   a   single   transfer   was   probably   network   latency   (with   around   6ms   of  
database   latency   spent   mostly   on   fsync   i.e.   0.49ms   fsync()   *   13   writes   =   6ms).  

3. We   assumed   that   Mojaloop   would   process   transfers   concurrently.  
 
We   revisit   this   last   assumption   in   our    Concurrency   Analysis .  
 

  



A   “Big   Gap”   Between   Critical   Work   Sections  
 
Our   second   takeaway   from   the   waterfall   for   a   single   transfer   was   that   the   critical   work   for   a  
transfer   could   be   divided   into   two   sections,   the   prepare   handler   and   the   fulfil   handler.   However,  
the   cumulative   latency   for   these   two   critical   sections   was   only   13ms,   compared   to   total  
end-to-end   transfer   latency   of   134ms,   an   order   of   magnitude   greater   than   the   critical   work.  
 
We   were   fairly   confident   that:  
 

1. The   network   latency   between   the   Mojaloop   cluster   and   our   test   harness   was   on   the  
order   of   1ms   to   3ms   at   most   and   that   our   test   harness   was   not   lagging   in   turning   prepare  
notifications   around   as   fulfil   requests.  

2. We   were   not   suffering   from   clock   skew,   since   our   external   test   harness   clock   was   a  
single   wall   clock,   and   since   our   internal   central   ledger   clock   was   also   a   single   wall   clock.  

3. Any   reduction   in   this   “Big   Gap”   would   improve   latency   but   not   throughput   since   we   had  
already   established   an   exact   relationship   between   throughput   and   the   13ms   cumulative  
latency   of   the   SQL   queries   (or   critical   work)   for   a   single   transfer.  

 
After   sharing   our   initial   result   with   the   Mojaloop   community,   we   decided   to   investigate   further.  
 

  



Concurrency   Analysis  

The   C10K   Problem  
Our   Waterfall   Analysis   revealed   an   exact   relationship   between   the   critical   SQL   work   of   a   single  
transfer   and   throughput,   which   should   not   be   the   case,   unless   transfers   are   processed  
sequentially   by   handlers.   However,   Node.js   was   designed   to   solve    the   C10K   problem    and   is  
able   to   process   thousands   of   asynchronous   events   concurrently   for   high   throughput.   Failing   to  
exploit   concurrency   would   certainly   contribute   to   the   underutilization   and   low   throughput   that   we  
were   seeing.   We   decided   to   investigate   this   forced   serialization   hypothesis.  

Testing   The   Forced   Serialization   Hypothesis   (Concurrency=1)  
We   reran   our   load   test   to   generate   20   concurrent   transfers   and   plotted   the   resulting  
prepare/position   handler   start   and   end   times   as   a   waterfall.   This   revealed   that   each   Mojaloop  
handler   was   indeed   forcing   transfers   to   be   processed   one   at   a   time   within   the   handler,   by  
requesting   only   one   message   from   Kafka,   then   processing   this   message,   before   going   back   to  
Kafka   for   another   message,   thereby   wasting   the   Node.js   process   and   associated   libuv  
threadpool,   since   most   of   the   critical   work   in   processing   a   message   represents   asynchronous  
network   requests   to   the   MySQL   database:  
 

 

  

https://en.wikipedia.org/wiki/C10k_problem


Fixing   Concurrency  

Processing   Multiple   Transfers   Concurrently   Within   A   Handler  
We   found   that    central-services-stream/src/kafka/consumer.js    already   made   provision   for  
processing   messages   using   flow   control   with   different   levels   of   concurrency   (with   the   default  
being   no   concurrency).   We   therefore   needed   only   to   find   a   way   to   consume   multiple   messages  
at   a   time   from   Kafka.  

Consuming   Multiple   Messages   At   A   Time   From   Kafka  
The   librdkafka   library   makes    a   critical   throughput   tuning   recommendation :  
 
The   key   to   high   throughput   is   message   batching   -   waiting   for   a   certain   amount   of  
messages   to   accumulate   in   the   local   queue   before   sending   them   off   in   one   large  
message   set   or   batch   to   the   peer.   This   amortizes   the   messaging   overhead   and  
eliminates   the   adverse   effect   of   the   round   trip   time   (rtt).  
 
While   Mojaloop   exposed   a    batchSize    config   option   per   handler,   to   configure   the   number   of  
messages   (not   bytes)   returned   per   poll   to   Kafka,   we   found   two   bugs   in  
central-services-stream/src/kafka/consumer.js    when   increasing    batchSize .  

Unbounded   Poller   Instantiations  

Although   each   message   received   from   Kafka   is   passed   to   a   synchronous   queue   called  
_syncQueue ,   an   instance   of    the   async   library’s   queue   object ,   every   single   processed   message  
results   in   a   call   to    _consumeRecursive() ,   which   in   turn   launches   a   never-ending   poll   against  
Kafka   that   will   make   a   network   request   to   Kafka   every   1100ms   ( consumeTimeout=1000ms    +  
recursiveTimeout=100ms ).  
 
When    batchSize    is   1,   this   is   not   a   problem,   but   when    batchSize    is   greater   than   1,   an   additional  
poll   against   Kafka   is   launched    for   every   transfer    flowing   through   Mojaloop.   After   several  
thousand   transfers,   Kafka   would   be   brought   to   its   knees   by   the   sheer   number   of   pollers.  
 
We   submitted   a   fix   to   add   a   guard   within    _consumeRecursive()    to   launch   a   poll   against  
Kafka   only   if   no   other   polls   exist,   no   matter   how   many   times    _consumeRecursive()    is  
called   or   from   where.  

  

https://github.com/edenhill/librdkafka/blob/master/INTRODUCTION.md#high-throughput
https://caolan.github.io/async/v3/docs.html#queue


Four   Second   Latency   Spike  
We   found   another   interesting   case   where   sending   20   concurrent   transfers   into   Mojaloop   with   a  
batchSize    of   8   would   result   in   a   four   second   latency   spike   for   the   last   4   transfers:  
 
6adb4ae6-ca05-45e7-8f9f-9a8e1fe67ed0     300ms  
7d9bcddc-e52b-4fae-8261-44ce4e22adb3     421ms  
fc059148-6408-4c02-9e98-095bf6adb961     433ms  
0574caf4-b5c3-4217-8243-9f160cf576aa     438ms  
79d6f28c-282d-4cb9-bc2f-2c314db52b2f     441ms  
7bd9f47f-16bb-4790-9c27-2a46882086e7     445ms  
c6b35825-074c-4aee-baeb-c8f43f1da9c6     448ms  
775d4dea-93f9-401e-882c-9234f4d79f2b     449ms  
92d1d88a-1452-47f1-aadc-1ad35de3cbc7     583ms  
b32b7aec-724c-4047-9cdd-f0389ef7953f     589ms  
340422c2-957b-4b6f-9ecd-75d20ed5d227     592ms  
433e6e92-9736-4d9a-af64-13a9d4e06817     593ms  
be16e1d4-fd27-4fe2-b872-f2e9e7c2b4db     599ms  
a6ee1d6e-71d2-4f1e-8886-50ee2887f42b     600ms  
79f54796-150b-42f2-8037-2fd34f0b5b5a     607ms  
444c8ef8-03af-4c03-bb95-28a0187370cf     608ms  
0ca93c5e-ceba-460e-9447-59c2816b720b    4254ms  
22410a91-4d13-45ca-97a4-610262624bf4    4257ms  
24a8fdf2-bc80-400c-aa02-c3f2c7c80992    4262ms  
4d7a826e-a097-4ba0-8f40-47da0fdfa6fe    4266ms  

 
In   fact,   we   were   able   to   generalize   and   reproduce   this   four   second   latency   spike   for   any  
test   where   the   number   of   concurrent   transfers   into   Mojaloop   was   not   a   multiple   of   the  
batchSize    of   the   number   of   messages   consumed   at   a   time   from   Kafka.  
 
The   reason   for   this   surprising   behavior   was   a   little-used   config   variable   called    consumeTimout ,  
also   used   by    central-services-stream/src/kafka/consumer.js ,   which   was   by   default   set   to   1000ms  
i.e.   one   second.   This    consumeTimeout    is   passed   to   Kafka   and   instructs   Kafka   to   wait   at   most  
one   second   if   it   has   less   than    batchSize    messages   available   to   consume.   In   other   words,   if   the  
consumer   asks   for   four   messages,   and   Kafka   only   has   three   available,   then   Kafka   will   wait   a   full  
second   before   returning   whatever   messages   it   has.   We   found   this   one   second   delay   was  
encountered   by   both   the   prepare   and   fulfil   handlers   as   well   as   both   notification   handlers,  
resulting   in   a   four   second   latency   spike   across   a   transfer.  
 
We   submitted   a   fix   to   reduce   the   default   consumeTimeout   latency   from   1000ms   to   50ms  
and   we   propose   that   Mojaloop   implement   config   validation   in   future   to   warn   operators  
about   misconfigured   config   options.  

  



Testing   Concurrency   Throughput   Improvements   (Concurrency=4)  
After   updating   Mojaloop   to   process   messages   within   handlers   concurrently   and   then   setting   the  
concurrency   level   per   handler   to   4,   we   reran   our   load   test   to   generate   20   concurrent   transfers  
and   plotted   the   resulting   prepare/position   handler   start   and   end   times   as   a   waterfall:  
 

 
 
The   result   confirmed   that   Mojaloop   was   now   able   to   process   messages   concurrently,   with  
messages   within   a   handler   now   being   processed   4   at   a   time.   As   soon   as   the   first   message  
finished   processing   (after   20ms),   the   next   message   was   immediately   processed,   and   so   on.  

50%-100%   Throughput   Improvement  
The   cumulative   latency   for   the   concurrent   waterfall   is   147ms   in   total,    almost   half   the  
cumulative   latency   for   the   baseline   waterfall    of   278ms,   representing   a   throughput   of   136  
TPS   (1000ms   /   (147ms   /   20   transfers))   compared   to   the   baseline   throughput   of   71   TPS,   and  
resulting   in   a   throughput   improvement   of   91%    ((136   -   71)   /   71   *   100)   for   this   test   run.  

Kafka   Network   Latency   Amortized   (Bonus)  
In   addition   to   the   above   result,   whereas   the   network   latency   to   Kafka   in   between   handlers   was  
clearly   contributing   to   the   total   latency   of   the   baseline   waterfall   (278ms   -   260ms   =   18ms),    the  
network   latency   to   Kafka   is   now   eliminated ,   since   we   were   also   able   to   optimize   Mojaloop   to  
fetch   messages   from   Kafka   in   the   background   while   still   processing   messages   in   the  
foreground,   amortizing   the   network   latency   to   Kafka.   However,   we   recommend   that   this   bonus  
optimization   be   disabled   to   ensure   Kafka   auto-commit   safety,   since   Kafka   may   auto-commit   the  
consumed   log   offset   for   messages   still   being   processed   as   soon   as   the   next   batch   of   messages  
is   requested.  

  



Finding   The   Concurrency   Sweetspot  
With   our   minimum   deployment,   we   reran   our   load   test   to   generate   1000   transfers,   sending   100  
transfers   into   Mojaloop   concurrently,   in   order   to   find   the   concurrency/throughput   sweetspot:  
 

Concurrency  Test   Run  Batch   size  Throughput  Latency   Avg  
(ms)  

Latency   Max  
(ms)  

1  1  1  69  1381  1562  

 2  1  71  1341  1629  

 3  1  73  1310  1525  

      

4  1  4  133  718  985  

 2  4  130  728  1041  

 3  4  134  715  1041  

      

8  1  8  139  685  983  

 2  8  143  651  903  

 3  8  146  654  881  

      

16  1  16  131  738  1199  

 2  16  112  848  1766  

 3  16  115  840  1669  

      

16  1  10  133  724  1128  

 2  10  128  756  1473  

 3  10  138  696  967  

 
 
 



Big   Gap   Analysis  

Summary  
The   term   “Big   Gap”   refers   to   the   large   period   of   time,   on   the   waterfall   chart   for   a   single   transfer,  
between   the   prepare   and   fulfill   handlers   processing   a   message.   We   do   not   think   this   would   be   a  
problem   in   a   production   environment   as   increased   queue   depth   and   multiplicity   of   handlers  
minimizes   the   effect.   However,   operators   need   to   be   aware   of   this   and   we   recommend   that  
sanity   checks   be   introduced   in   the   code   for   queue   consumption   settings.  

Waterfall  
We   instrumented   the    central-services-database    and    central-services-stream    libraries   to   capture  
how   the   time   for   a   transfer   is   spent:  
 

 
As   can   be   seen,   the   total   time   for   the   transfer   is   142ms   of   which   at   least   100ms   is   due   to   a  
setTimeout()    delay.  

  



Mojaloop   Kafka   Consumer  
Mojaloop   supports   different   ways   to   consume   from   a   Kafka   topic.   This   focuses   on   just   one  
method   as   this   was   the   default   at   the   time   of   testing    viz.    Recursive   consuming   with   synchronous  
message   processing.   A   consumer   subscribes   to   a   Kafka   topic   at   which   time   a   recursive   call   to  
consume   is   started.   When   consuming,   a   batch   (C_batchSize)   of   messages   is   requested.   if   there  
aren’t   enough   messages   to   satisfy   C_batchSize,   Kafka   will   wait   for   up   to   C_consumeTimeout  
before   returning   what   messages   it   has.   Once   the   consumer   has   the   messages   it   then   adds  
them   to   a   queue   to   be   processed   at   the   configured   concurrency.   
 

Constant  Default   Value  Description  

C_recursiveTimeout  100ms  The   setTimeout()   delay  
before   consuming   from   the  
topic   again   if   there   are   no  
messages   or   there   has   been  
an   error.  

C_work  Varies  The   time   taken   for   a   handler  
to   process   a   message.  

C_consumeTimeout  1000   ms  The   time   that   Kafka   will   wait  
up   to   for   C_batchSize   to   be  
met   before   returning   the  
messages.  

C_batchSize  1  The   number   of   messages  
consumed   from   a   topic   at   a  
time  

C_concurrency  1  The   number   of   messages  
that   are   processed  
concurrently.  

 

  



Illustration  
To   illustrate   this,   consider   the   case   where   there   are   no   messages   in   the   Kafka   topic.   A   timeline  
of   what   is   happening   would   look   like:  

 
 
In   the   figure   above,   time   elapses   on   the   horizontal   axis   and   the   vertical   axis   represents   when  
the   Kafka   topic   is   being   connected   to   by   the   consumer.   At   t_0,   the   consumer   connects   to   the  
Kafka   topic.   Since   there   are   no   messages   in   the   topic,   Kafka   will   wait   for   C_consumeTimeout  
before   closing   the   connection   at   t_1.   The   consumer   will   wait   for   C_recursiveTimeout   before  
connecting   to   the   topic   at   t_2.   You   can   see   that   the   effect   is   to   create   windows   where   the   Kafka  
topic   is   checked   for   messages.   Now   consider   the   case   where   a   single   message   is   placed   into  
the   Kafka   topic:  
 

 
The   dotted   lines   illustrate   the   first   case   where   there   are   no   messages.   The   bolder   lines   illustrate  
how   this   changes   when   a   message   is   placed   onto   the   topic   and   then   consumed   for   processing.  
Noting   that   C_batchSize   =   1,   Kafka   will   return   the   message   it   has   at   t_1.   The   consumer   will   then  
process   this   message   for   C_work   before   connecting   to   the   topic   at   t_2.   As   can   be   seen,   straight  
after   the   handler   finished   its   processing   it   consumes   from   the   Kafka   topic   again.   This   results   in  
the   windows   where   the   topic   is   checked   for   messages   to   be   shifted   to   the   right   of   the   original  
windows.  

  



Latency   Gaps  
There   is   a   potential   for   latency   to   be   introduced   when   handlers   are   connected   in   series.   In   the  
case   of   Mojaloop,   this   means   the   Prepare-position   handler   produces   to   the   same   topic   that   the  
Notification   handler   consumes   from.   This   is   illustrated   in   the   figure   below:  
 

 
Here   we   have   assumed   that   the   handlers   are   using   the   same   C_consumeTimeout,  
C_recursiveTimeout   and   are   started   at   the   same   time.   The   top   part   of   the   above   figure   is   the  
Prepare-position   handler   receiving   a   message   in   its   window.   It   starts   to   process   the   message.   In  
the   meantime,   the   Notification   handler   connects   to   the   notification   topic   at   t_2.   At   t_3   the  
Prepare-position   has   finished   processing   the   message   and   produced   it   to   the   notification   topic.  
Since   this   has   fallen   inside   of   the   window   where   the   Notification   handler   is   connected   to   Kafka,  
Kafka   will   return   the   message   to   the   notification   handler.   In   this   case,   there   is   no   latency.  
 
Let   us   consider   the   scenario   illustrated   in   the   figure   below.  



 
This   is   similar   to   the   previous   scenario   except   the   Prepare-position   handler   produces   to   the  
notification   topic   at   t_1.   This   is   in   the   C_recursiveTimeout   of   the   Notification   handler.   This  
introduces   a   Gap   =   t_2   -   t_1   as   the   Notification   handler   will   only   connect   to   the   topic   at   t_2.  

Analogy  
Consider   a   train   arriving   at   a   station   to   collect   passengers.   Messages   are   passengers   arriving  
according   to   some   distribution.   The   constraint   is   that   the   train   will   leave   when   it   is   full   or   when  
the   departure   time   has   been   reached;   whichever   comes   first.   C_work   is   the   time   it   takes   for   the  
train   to   go   to   its   destination   and   return.   Here   we   can   see   the   throughput   of   this   system   is  
dependent   on   how   many   people   the   train   can   carry   at   a   time.   The   wait-time   or   latency   for  
passengers   is   dependent   on   the   time   they   arrive   and   the   arrival   windows   of   the   trains.  

  



Latency   Bound  
Based   on   the   above   observations,   we   can   give   an   upper   bound   for   the   latency.   Consider   the  
below   variables:  
 

Variable  Description  

x_1  Start   offset   for   handler   1  

x_2  Start   offset   for   handler   2  

C_stagger  x_1   -   x_2  

x  Offset   for   when   message   is   put   onto   handler  
1   topic  

C_consumeTimeout1  Consume   timeout   for   handler   1  

C_consumeTimeout2  Consume   timeout   for   handler   2  

C_work1  Time   for   handler   1   to   process   message  

C_work2  Time   for   handler   2   to   process   message  

C_recursiveTimeout1  Recursive   wait   time   for   handler   1  

C_recursiveTimeout2  Recursive   wait   time   for   handler   2  

 
Then  

Gap   =   C_consumeTimeout2   +   C_recursiveTimeout2   +   x_1   -   (x_2   +   x   +   C_work1)  
 

Let   C_stagger   =   x_1   -   x_2  
 

Gap   =   C_consumeTimeout2   +   C_recursiveTimeout2   -   (x   +   C_work1)   -   C_stagger  
 

We   assume   that   (-C_recursiveTimeout2)   <   C_stagger   <   C_recursiveTimeout2   then  
 

Gap   <   C_consumeTimeout2   +    2   *   C_recursiveTimeout2  
 

  



Discussion  
From   the   above   we   see   that   the   latency   is   dependent   on   the   constants   used   for   the   handler  
consuming   from   a   topic.   For   a   Mojaloop   prepare   leg,   the   Prepare-position   handler   consumes  
from   the   Prepare   topic   and   the   Notification   handler   consumes   from   the   Notification   topic.    Since  
both   handlers   are   configured   to   use   the   same   C_recursiveTimout   and   C_consumeTimeout:  
 

Prepare   Gap   <   2   *   (C_consumeTimeout   +    2   *   C_recursiveTimeout)  
 

Similarly   for   the   Transfer   leg,   the   Fulfill-position   handler   consumes   from   the   Fulfill   topic   and   the  
Notification   handler   consumes   from   the   notification   topic.   
 

Fulfill   Gap   <   2   *   (C_consumeTimeout   +    2   *   C_recursiveTimeout)  
 

For   a   transfer   this   gives   
 

Total   Gap   <   4   *   (C_consumeTimeout   +    2   *   C_recursiveTimeout)  
 

Conclusion  
Throughput   and   latency   may   or   may   not   relate   to   each   other,   and   that   if   they   do,   then   this  
relationship   may   be   inverse   or   even   direct,   according   to   the   nature   of   the   system   being  
analyzed.   In   the   case   of   Mojaloop,   the   “Big   Gap”   problem   is   a   latency   cost   incurred   by   the   fact  
that   messages   are   pulled   from   a   topic.   This   cost   can   be   reduced   by   decreasing   timeouts   and  
better   make   use   of   that   time   by   increasing   concurrency   but   it   is   unlikely   to   be   eradicated   due   to  
the   fundamental   constraints   of   the   system.   Finally,   this   is   a   problem   only   when   there   are  
intermittent   arrivals   in   payments,   leading   to   the   Kafka   queues   not   always   having   messages   to  
consume.   We   do   not   think   this   would   be   a   problem   in   a   production   environment   as   increased  
queue   depth   and   multiplicity   of   handlers   minimizes   the   effect.   However,   operators   need   to   be  
aware   of   this   and   we   recommend   that   sanity   checks   be   introduced   in   the   code   for   queue  
consumption   settings.  
  



Cluster   Specifications  

ModusBox   Reference   Cluster   -   AWS  
1   instance   =   i3Xl   -   AWS   storage   optimised.   4   vCPUs   with   30.5   GiB   memory  
Kafka   +   zookeeper   3   instances  
1   instance   for   mysql  

 

Coil   Cluster   -   GCP  
Instance   type:   n1-standard-4   4vCPUs   15GiB   RAM  
https://cloud.google.com/products/calculator/#id=5ccb8977-1eb6-45ed-ac41-6415dd708632  
 

Component  Pod   Scale  Dedicated   Nodes  label  

Kafka   +   ZooKeeper   3  broker  

MySQL  1  1  data  

ML-API-Adapter  1  1  ml_api  

Prepare   handler  1  1  ml_cl_prepare  

https://cloud.google.com/products/calculator/#id=5ccb8977-1eb6-45ed-ac41-6415dd708632


Position   handler  1  1  ml_cl_position  

Fulfill   handler  1  1  ml_cl_fulfil  

Notification   handler  1  1  ml_notify  

Load   generator  1  1  load  

monitoring   1  monitor  

SSD   32   GB   

 
 


